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The problem of determining small changes in the geometric parameters of elastic bodies 
is considered. It is assumed that the frequency spectrum of their natural vibrations should 

have given small changes. The method of the small parameter is applied, the problem 

is reduced to solving an &-moment problem. As an illustration, the problem of deter- 

mining the variable stiffness of an elastic beam as well as the problem of determining 

the meridian shape of shells of revolution by means of given frequencies of natural 
vibrations are considered. 

It should be mentioned that the most exhaustive results onsuch problems exist from 

the inverse Sturm-Liouville problem Cl. 2] as well as for-the inverse problem of quantum 

scattering theory p, 43. 

Only a few papers are devoted to inverse problems of elastic body vibrations. However, 

the problem of determining the density of an inhomogeneous string by means of its fre- 

quency spectra has been investigated with mathematical rigor 15-73. The problem of 
determining the stiffness of a beam by means of given natural vibrations frequencies has 
been considered in an elementary formulation in [8]. This problem has been examined 
for beams and plates in more detail in /_Q, lo], where a method is given for the construc- 

tion of the variable thickness for several given first natural vibrations frequencies and 

its numerical realization is demonstrated in examples. The present paper is a develop- 
ment of these others. 

1, Formulation of the problem, Let us consider the following inverse 
natural vibrations problem resulting from the first part of 1[7], under the assumption of 
smallness in the increments of the natural frequencies. 

Let there be the self-adjoint eigenvalue problem 

AU -mu=o, Giu = 0 (i = 1, . . . ( 24 (1-j) 
where 

AU = ~ (- i)i Iai (a, Z) .‘i’]‘i’ BU = ~ (- 1)’ [bi (a, 2) .‘i’]“‘, m < n (4.2) 
i=o i=o 
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and Gig denote the boundary conditious 
U(k) = 0 (k = 0, f, . . . . n - 1) for 2 = q, 51 (2.3) 

For some function a (z) =t a, (x) let the eigenvalues of the problem (1.1) be 

0 < &I < ?VQz < . ..I (1.4) 

The problem is to determine the function a (2) so that the eigenvalues (1.4) would have 
given small changes, i.e. it is necessary to find the function a (z) by using the given 
eigenvalue spectrum of the problem (1.1) 

I& = &0j + Ehli (3.5 1 
where a is a small number. 

Let us take a as a small parameter, and let us assume that the function a: (z), the oper 
raters A II B and the ~~gen~ctio~ uc;a.re expandable in series in this parameter 

a==ao+eal+ . . . , @i=ZQi+8UX++ .a. 0 *“) 
A==&+eAl+ ,.e, B=Bo+eBr+ . . . 

where 

Substituting (1,5), (1.6) into the equatiou and boundary conditions fl.l),.we%nd that 

&JO+ - &OjBOUOi s 0, CjU@ = 0 (1.3) 

Aouli - ~B~ul~ = ~Oi~lUOi + ~Ii~OU~ _T -JtUOi 

Gjuri = 0 (i = 1,2, . . . ; j = 1, . . . , Zn) (1.9) 
Equations (I. 9) connect the given natural frequencies hti with the desired functiona, (z). 
These equations have nontrivial solutions when their right sides are o~ogonai to the 
solutions of problem (1.8). Taking account of the normalization condition 

Xl 

i uoiBouoidx=l (1.10) 

& 
the ortbogonality conditions become 

Substituting A@, into (1.11) according to the relationships (1.7). and taking account 
of the homogenei~ of the bo~da~ conditions (1.9). conditions (I, 11) can be converted 
into n-1 

. hii t= al(~)g~(~)d~ c (i = 1,2, . . . ) (1.12) 
.1 

Moments of the desired functions a, (4 relative to the functions & (~1, axe given by 
the relationships (1.12). Let us assume the gi (z) to be linearly independent functions, to 
belong to the space of measurable and alterable-rn~ul~ functions with pth power LP,Q 

and let us consider the function al (2) to belong to the space P’, where 11~ f ~JP’ = 1 , 

and in addition to be bounded in the norm 
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flal(z)l<l (1.14) 

Then the problem under consideration can be reduced to the solution of the l-moment 
problem 111. 121. In this case the L-moment problem is to fiid the necessary and suf- 
ficient conditions for the existence of the function a, (2) E LP’ satisfying condition 

(1.14) and having the number LIP as their moments relative to the function gi (2). . 
Thus, the inverse problem of natural vibrations can be reduced, under definite assump- 

tions, to the well worked out Z-moment problem. In the following sections someexam- 
ples are presented of the solution of specific problems of the vibrations of elastic bodies 

by such a method. 

8. Invrrre problem .of free beam vibrrtion8. letusconsiderthe prob- 
lem of determining the size of similar cross sections of a hinge-supported beam accord- 
ing to its given frequencies of natural vibrations. 

The differential equation for this problem can be represented as 

(aaM”)“- Lui/ = 0 (2.1) 

where a (2) is the desired function characterizing the cross section, The boundary con- 

ditions are the following: 

II (0) = y’ (0) = y (i) = y” (1) = 0 (2.2) 

Let us proceed from the case of constant cross section a, = 1. Then the eigenvalues 

and the normalized eigenfunctions of the problem (2.1). (2.2) are 

her =iW, ye = Jft/Zsin inz (2.3) 

Let us now determine the function a (2). for the case when the first ,k eigenvalues dif- 

fer slightly Lam the values (2.3), and me remaining eigenvalues agree with the values 

in (2.3). i e. for the case li = iW+ e,, (2.4) 

where ei are small numbers if f < k, and ei = 0, if 1 > k. 
According to (1.13). (2.3) we have 

gi (z) = 2tW sinQt.2 = iW (1 - co9 Ziau) 

Hence, in the case under consideration 

(2.5) 

; 
ei = iox4 3 a1 (1 - cos 2inz) dz (i= i,2,...) 

0 

let us.examine the problem in the space L1 by appending the condition 

(2.6) 

(2.7) 

to the relationships (2.6). It is known from the theory of the Z-moment problem (123 

that the necessary and sufficient condition for the solvability of the problem (2.6). (2.7) 
is the solvability of all the finite dimensional I-poblems which are obtained from 

(2.6),(2.7) if i = 1, . . . . n, where n is a fixed finite number. To solve this latter mo- 
ments problem it is necessary and sufficient that there exist n numbers S,“, . . . . En” 

yielding the solution of the following problem. Find 

(2.8) 
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under the condition 
Em +...+g,c,=i IP.9) 

The solution a, fz) of the f~ite-dimensional b-moment problem is hence expressed as 

a1 (~1 = A= i: E,Og, (I) (Z.10) 
i=l 

Taking account of (2.5). (2.6) and utilizing the Lagrange multiplier rule, the solution 
of the problem (2-Q (2.9) can be found as the solution of the system 

where 

af 63 - 0 

-q-- ’ 
5 EiEi =i (i = 1 ,...,n) 
i=l 

f (5) Z; j [$ &i*x4 (l_- cos 2inz)j2 dz - p [$ Qi - i j 
0 i=l is1 

and p is the Lagrange multiplier. It is easy to find that 

where 

(2. ii) 

(2.12) 

(‘.14) 

If (2. X3), (2.14) are utilized to evaluate the minimum value of the integral (2.3), there 
is obtained (Z-15) 

substituting the found quantities (2.13). (2.15) into condition (2. lo), we find the desired 
function 

al(z)=Zi i (his--+ j&(1---cosZi=) (2.16) 

i=l 8-l 

Passing to the limit as n -) co , there results from (2. X41-(2,16) that if 

then the inverse vibrations problem being examined has the solution 

a1 (5) = -2-jj :& 4 eos 2&%x (2.18) 
S==l 

This solution is unique in the case of equality in (2.17). The problem has a continuum 
of solutions in the inequality case. 

8. Inverrs problem of fire membrrno #hell vlbrrtionr. Asanillus- 
tration of the application of the proposed method to solve inverse free shell vibrations 

problems, let us consider the axisymmetric vibrations of an almost cyclindrical shell 
of revolution. 

If the arclength is taken as coordinate on the middle surface, the problem is described 
by the following equations in dimensionless quantities : 

Tl = u! -/r,w+v +u-vkw, (BTI)’ - B’Ta f ?a = o (3.1) 
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- kzw + vu’ - vklw , klTl f kaTa + hw = 0 
(Wilt-) 

Here T,, Tz are stresses, u,, w displacements, kg, ka curvatures, B is the distance along 
the axis of rotation, and 3~ a frequency parameter. 

Let us henceforth utilize the Gauss and Codazzi conditions for shells of revolution 

Bklk, = -B” (Bk,)’ = k,B’ (3.2) 

Let us proceed from the solution of the problem for a cylindrical shell obtained from 
(3.1) for B. = I., ko, = 0, k,a = 1 

ug” - vwo’ + &Ii, = 0, -wg + vug’ + how0 = 0 (3.3) 

Let the boundary conditions of the problem be 

ug (6, = 0, ug (L) = 0 (3.4) 

The eigen modes and eigenvalues resulting from (3.3) and the boundary conditions 
(3.4) are 

uan = Cn sin s,p, 
(3.5) 

hti; = ‘/.L (1 + s*s,+ I[#1 j sn2)2 - 4 (1 - v2) sna (3.6) 

Let us now find the shape of a shell of revolution such that its l?rst eigenvalues ho+, 
would differ from the values (3.6) by given small numberr: es. In the case under consid- 
eration k#), If,@) and B (2). would be the desired functions. But two of these functions 
can be expressed in terms of the third if the Gauss and Coda& conditions (3.2) are used. 
Obtained from these conditions by the method of the small parameter is that the first 
members in an expansion in the small parameter are related by means of 

k,, = -BIN, k,, = -B, (3.7) 

Taking account of’ (3.7), the method described in Sect.; permits derivation of the fol- 
lowing moments for the function Br in this case : 

i 

Ei* = 
s 

BI Wgi 63 dP (3.6) 
” 

Here 

% [Bl' (.q - Bl’ ml (3.9) 
_. 

&=O for i=k+l, k+2,.._.) 

8i (S) =2 t(“Oi - ‘“03 wOile + ‘Oi (“OiwOi)’ - 2Loi (“Oi4 + wOiY (3.10) 

In contrast to the preceding illustration; an addiiional term is contained in this problem 
which is due to the fact that the second~derlvatlves -BB,’ @)of the desired function are 
introduced in the formulation of the problem by means of (3.7). The unknown factor 

B; (L) - B; (0) in the additional term in the solution of the C-moment problem can 
be considered as a parameter whose value is determined after the problem has been 
solved, by using the found solution B, (@j. By means of (3.5). (3.10) we have 

gi (p) = ei - Di cos 2sJ3 (3.11) 
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(1 
Ai= 

- Si2) lOi 

2 (I- h,J ’ 
D _ I(1 + w 6; - 11 hOi -- 

I 2 (1 -‘,i) 
(3.12) 

Solving the n-dimensional I -moment problem (3.8) under the condition 
L 

s BI” (P) 43 < l2 (3.13) 

0 
analogously to the preceding example, we have 

(3.14) 

(3.15) 

It can be shown that (2.15) remains valid in the case under consideration. Correspond- 

It is seen from (3.9), (3.16) that 

B; (L) = B," (0)~ 0, ei* = &i (3.17) 

Passing to the limit as n - 0~ in the relationships (3.15). (3.16). we finally obtain that 
the considered inverse problem of shell vibrations has a solution if 

ii 

+~l&<12 (3.18) 
t 

The solution has the form 

B](b)= -2i _+3s2sip (3.19) 
i=r i 

and is unique for the case of equality in the relationship (3.18). 
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Asymptotic estimates are determined for the densiry of eigenvalues. The existence of 

points of concentration of the eigennumbers is established. Results for the natural fre- 

quencies of shells and the eigenvalues in stability problems are compared. Conditions 
are written down for the solvability of the linear equation describing the stability in the 

presence of small perturbatiom. 

1. The stability equation for given stress resultants in the middle surface of a shell 
whose radii of curvature are almost constant is 

DAAAA@,,,,, + EhA$,(Dn, + h,,AA (XI@,_ + az@,J = 0 

a&,, = Nr; a%n =Ns (O,<m,%<l), w=AAQ, 

A@=@,,,+U&,, A$)= R;l@,xx+R;l@,yy, cp=EhA,@ 

(1-f) 

Here 2, y are Cartesian coordinates, w (r, g) is the normal shell deflection. cp (z, F) 
is the stress function, d, is the resolving function. ‘D is the cylindrical stiffness, E, v 
is the Young’s modulus and Poisson’s ratio, -h = con& is the shell thickness. R, z cons& 
Rz z const are the radii of curvature, - N, and -Ns are two constant normal compres- 
sive forces. 

A rectangular shell of nonnegative Gaussian curvature, hinge-supported along the sides 
is considered 

O<ZQU, O<ydb 
The shell buckling mode,-to the accuracy of a normalized constant;-is 


